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ABSTRACT Achieving accurate and reliable positioning in dynamic urban scenarios using low-cost
vehicular onboard sensors, such as the global navigation satellite systems (GNSS), camera, and inertial
measurement unit (IMU), is still a challenging problem. Multi-Agent collaborative integration (MCI) opens
a newwindow for achieving this goal, by sharing the sensor measurements betweenmultiple agents to further
improve the accuracy of respective positioning. One of the major difficulties in MCI is to effectively connect
all the sensor measurements arising from multiple independent agents. The popular approach is to find
the overlapping areas between agents using active sensors, such as cameras. However, the performance
of overlapping area detection is significantly degraded in outdoor urban areas due to the challenges
arising from numerous unexpected moving objects and unstable illumination conditions. To fill this gap,
this paper proposes to leverage both the camera-based overlapping area detection and the inter-ranging
measurements to boost the cross-connection between multi-agents and brings the MCI to outdoor urban
scenarios using low-cost onboard sensors. Moreover, a novel MCI framework is proposed to integrate the
sensor measurements from the low-cost GNSS receiver, camera, IMU, and inter-ranging using state-of-
the-art factor graph optimization (FGO) to fully explore their complementary properties. The proposed
MCI framework is validated using two challenging datasets collected in urban canyons of Hong Kong.
We conclude that the proposed MCI framework can effectively improve the positioning accuracy of the
respective agents in the evaluated datasets. We believe that the proposed MCI framework has the potential
to be prevalently adopted by the connected intelligent transportation systems (ITS) applications to provide
robust positioning using low-cost onboard sensors in urban scenarios.

INDEX TERMS Multi-agent collaborative positioning, GNSS, camera, INS, inter-ranging, factor graph
optimization, urban canyons.

I. INTRODUCTION
Robust, cost-effective, and accurate positioning is significant
for the extensive commercialization of the emerging intelli-
gent transportation systems (ITS) [1] with navigation require-
ments, such as advanced collision warning systems [2], speed
advisory systems [3] and lane reservation systems [4]. The
low-cost global navigation satellite systems (GNSS) receiver,
inertial measurement units (IMU) and camera are the most
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ubiquitous sensor setups for vehicular systems, due to their
cost-effectiveness. Unfortunately, achieving lane-level posi-
tioning in urban canyons using these onboard sensors is still
a challenging problem. Decent accuracy with an error of
fewer than 5 meters can be obtained using low-cost GNSS
receiver in open areas with decent sky visibility. Whereas,
the performance of GNSS solutions can be significantly
degraded in urban canyons, due to the severe multipath
effects and non-line-of-sight (NLOS) receptions caused by
the high-rising building reflections and blockage [5]. To mit-
igate the impacts of the errors caused by multipath and
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NLOS receptions, numerous researches [6]–[9] are proposed
to exclude [8], [10], correct [9] or re-model [11] the out-
lier GNSS raw measurements to further improve the GNSS
solution in urban canyons. However, these methods rely on
the availability of additional costly 3D LiDAR sensors or 3D
building model information. The performance of IMU relies
on its cost and the bias corrections [12]–[14] from additional
sensors, such as the GNSS receiver. The recently extensively
studied visual-inertial navigation system (VINS) [15] can
provide accurate and relative positioning in a short period.
However, according to our findings in [16], the performance
of VINS can be significantly degraded in urban canyons
due to the numerous unexpected dynamic objects [17] and
unstable illumination conditions. Therefore, the integration
of GNSS/IMU/camera [18] is studied to make use of their
complementary properties to provide better performance.
However, its performance is still challenged in urban canyons.
In short, achieving accurate positioning from the low-cost
onboard sensors (GNSS/IMU/camera) from a single agent in
the urban canyon is still a challenging problem to be solved.

Instead of estimating the vehicular state simply based
on onboard sensors from a single agent, the multi-agents
collaborative integration (MCI) opens a new window for
improving the multi-agents positioning [19], [20] accuracy.
The MCI makes use of the sensor measurements from multi-
ple agents to facilitate respective positioning accuracy. One
of the major difficulties of MCI is to effectively connect
all the independent agents using intervehicle measurements,
such as the inter-ranging measurement [21] which describes
the relative distance between two agents. Then the states
of multi-agents are optimized based on the measurements
from vehicular (e.g. VINS) and inter-agent measurements.
Scholarly works on collaborative positioning are extensive.
Any attempts to give a full relevant review of collaborative
positioning would be incomplete. Based on how the states of
the multi-agents are connected, we mainly divide the pop-
ular research streams of collaborative positioning into three
groups: (1) the transponder-based, (2) the GNSS reference-
based, and (3) the overlapping area detection-based.

The transponder-based collaborative positioning (CP)
[22]–[24] make use of the radio ranging techniques, involving
the time of arrival (TOA) [25], time difference of arrival
(TDOA) [26] and received signal strength (RSS) [27], to esti-
mate the relative distance, namely inter-ranging measure-
ments, between multiple agents. Therefore, multi-agents are
connected using the inter-ranging measurements and their
states can be optimized by considering all the acquired mea-
surements using weighted least squares [28] or factor graph
optimization [29]. However, the accuracy of inter-ranging
measurements is not guaranteed in urban canyon. Its perfor-
mance can be significantly degraded due to the reflection
or blockage of surroundings objects, such as buildings and
dynamic vehicles. In short, the performance of inter-ranging
measurements relies heavily on environmental conditions.
To solve this problem, GNSS reference-based CP [28], [30] is
proposed to derive the relative measurements between agents.

The method does not require the inter-ranging and only
low-level GNSS raw measurements are required. By double-
differencing [28], [30] the GNSS measurements between two
agents, the relative constraint can be derived to optimize
the states of multiple agents. Significantly improved perfor-
mance can be obtained in open areas. However, the accuracy
of relative measurements estimated in [28], [30] suffers from
the multipath effects and NLOS receptions in urban canyons.
To solve this problem, our previous work in [31], [32] goes
one step further by making use of the 3D building model to
mitigate the impacts of multipath and NLOS signals before
estimating the inter-agent measurements. Besides, a novel
weighting scheme is proposed to model the uncertainty of the
measurements from different agents. Improved performance
is obtained in the tested dataset. However, the work in [31]
relies heavily on the assumption that the master satellites are
healthy without introducing any signal reflection or blockage.
The pseudorange error involved in the signal transmitted from
the selectedmaster satellite will be delivered to the estimation
of relative constraint. Unfortunately, it is hard to satisfy this
assumption in urban canyons [33] with numerous tall build-
ings. Interestingly, the work in [21] proposes to make use of
both the inter-ranging measurements and 3D mapping infor-
mation to increase the robustness of the collaborative posi-
tioning. Improved performance is obtained with the help of
the inter-ranging measurements. However, both of the work
in [21], [31] share the drawbacks of the stringent reliance on
the initial guess of vehicular states and the availability of 3D
building models. Moreover, the accuracy of the [21], [31] is
still far from the requirement of ITS which needs lane-level
accuracy.

The other research stream [34]–[36] is the over-
lap detection-based collaborative positioning where the
exteroceptive sensors, such as the 3D light detection and
ranging (LiDAR) or camera, are employed to detect the
overlapping area to further formulate the connection between
agents. The work in [37] proposed a collaborative visual
simultaneous localization and mapping (SLAM) framework
to enhance the accuracy of state estimation of each robot
equipped with a monocular camera. The connection between
multiple robots is established based on loop closure (also
called overlapping area) detection between agents. In other
words, the connection between the two robots is built if the
overlapping area is detected. Similar work in [38] explores
the potential of collaborative visual SLAM using low-cost
crowdsourcing data. The significantly improved positioning
accuracy shows the advantage of collaborative positioning
based on the onboard camera, compared with the single
agent-based method. However, the robustness and accuracy
are limited simply based on the monocular camera. The
work in [36], [39] employs the IMU to help to estimate
the scaling and perform VINS in each agent. A similar
overlapping area detection scheme is employed to estab-
lish the inter-agent connections. Unfortunately, only relative
measurements are derived from VINS or overlapping detec-
tion, causing inevitable drift in state estimation of agents.
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FIGURE 1. Overview of the proposed MCI framework which is composed of two parts: the multiple agent’s message preparation, and
multiple agents state optimization via centralized station.

Interestingly, the latest work in [34] extends the ultra-
wideband (UWB) to help the collaborative positioning of
the aerial swarm equipped with visual and inertial sensors.
Each agent performs the VINS independently to derive the
visual odometry relatively. Then the factor graph optimiza-
tion is performed to estimate the relative pose between aerial
swarms by integrating the measurements from VINS, UWB,
and object tracking. However, only the relative pose between
aerial swarms is estimated in indoor environments. Moreover,
the collaborative framework is limited in indoor environ-
ments with reliance on UWB stations. In short, the research
of overlap detection-based collaborative positioning is active
in the robotics field and only relative positioning is achieved
in indoor or constrained environments. Besides, the perfor-
mance of VINS and camera-based overlapping area detection
can be significantly impaired in urban canyons, due to the
unexpected moving objects and unstable illumination. Its
potential in outdoor urban environments is still to be explored.

Inspired by thework in [21] and [34], this paper proposes to
leverage both the vision-based overlapping area detection and
the inter-ranging measurements to boost the cross-connection
between multi-agents and bring the MCI to outdoor urban
scenarios using low-cost onboard sensors. The globally ref-
erenced GNSS solution is employed to mitigate the drift
of the positioning of multiple agents. A novel MCI frame-
work is proposed to integrate the sensor measurements from
low-cost GNSS receiver, camera, IMU, and inter-ranging
of each agent, using state-of-the-art factor graph optimiza-
tion (FGO) to fully release the potential of MCI based on
onboard low-cost sensors. To the best of the authors’ knowl-
edge, this is the first paper to employ both the overlapping
area detection and inter-ranging to connect multiple agents to
achieve the globally referenced collaborative positioning in
urban canyons based on low-cost onboard sensors.We believe
that the proposed framework can have a positive impact on
both the academic and industrial fields.

II. OVERVIEW OF THE PROPOSED METHOD
The overview of the proposed MCI framework is shown
in the following Fig. 1. The framework is composed of
two parts: 1) the multiple agent’s message preparation stage
and 2) multiple agents state optimization via a centralized
station.

Firstly, a single agent collects raw sensor measurements
from multiple sensors and performs pre-processing steps to
prepare an agent message, which will be sent to a central-
ized station for the optimization. The camera and IMU of
a single agent form a minimal VINS sensor setup and the
visual/inertial integration is performed using factor graph
optimization to estimate the pose of the agent. The output of
the integration is the VINS pose and feature descriptor. Sec-
ondly, The GNSS pre-processing block outputs the position-
ing information in the east, north, and up (ENU) coordinate
system [12]. The inter-ranging preprocessing block outputs
the inter-ranging distance between two separate agents on the
road. Finally, the VINS pose, feature descriptors, GNSS posi-
tioning, and inter-ranging distance measurements are pack-
aged to a customized agent message. In this paper, we assume
that each agent is equipped with the same sensor setup and
all the agent messages are sent to the centralized station
via wireless communication. Moreover, the proposed MCI
framework can also be applied to agents with different sensor
setups.

In the centralized station side, all the agent messages are
collected with a specific agent index. Then the loop closure
detection is performed to detect the cross-connection between
the separate agents based on the feature descriptors. Besides,
the loop closure between different image frames of a single
agent is also detected to mitigate the pose drift. Based on
the received agent messages and newly detected loop closure
detection results, a factor graph can be constructed based on
the following constraints:
(1) The pose estimation from the VINS of each agent.

VOLUME 8, 2020 124325



W. Wen et al.: Multi-Agent Collaborative GNSS/Camera/INS Integration Aided by Inter-Ranging

(2) The pose estimation from the GNSS receiver of each
agent.

(3) The loop closure constraint of each agent.
(4) The overlapping area detection constraint between two

separate agents.
(5) The inter-ranging measurements between two separate

agents.
Therefore, the pose estimation of each agent can be re-

optimized based on the newly established graph structure to
obtain improved positioning accuracy. The major contribu-
tions of this paper are listed as follows:
(1) This paper proposes to leverage both the vision-based

overlapping area detection and the inter-ranging mea-
surements to boost the cross-connection between
multi-agents and bring the MCI to outdoor challeng-
ing urban scenarios using low-cost onboard vehicular
sensors.

(2) This paper proposes a novel MCI framework to inte-
grate the sensor measurements from low-cost GNSS
receiver, camera, IMU, and inter-ranging of multiple
agents, using state-of-the-art factor graph optimiza-
tion (FGO) to fully release the potential of MCI based
on onboard low-cost sensors.

(3) This paper evaluates the performance of the proposed
MCI using two challenging datasets collected in chal-
lenging urban canyons of Hong Kong.

To make the proposed MCI framework clearer, the follow-
ing notations are defined and followed by the rest of the paper.
a) The VINS works in the local frame {Li} of the ith agent.

The body frame of the ith agent is denoted by {Bi}.
b) The {·}Li denotes the variables concerning the ith agent’s

local frame.
c) The {·}bi denotes the variables concerning the ith agent’s

body frame.
d) The {·}w denotes the variables concerning the world

frame. The east north and up (ENU) coordinate is
selected as the world frame in this paper.

e) The variable i denotes the index of the agent. The vari-
able k denotes the index of the keyframe of a single
agent.

III. AGENT MESSAGE PREPROCESSING
A. VISUAL/INERTIAL NAVIGATION SYSTEM (VINS)
For the visual/inertial integration, we adopt the existing VINS
algorithm proposed in [15]. The VINS estimates the local
pose of the agent. There are many impressive VINS algo-
rithms, such as the [40]–[42]. Any of them can be applied
to our proposed MCI framework. Although the VINS is not
the contribution of this paper, we still briefly present the
formulation of VINS optimization for the completeness. The
state vector of the VINS for the ith agent in this paper is
defined as follows,

χ i = [x1,x2, . . . ,xn, xbc, λ1, λ2, . . .λM ] (1)

xk = [pLibk , v
Li
bk ,q

Li
bk ,ba,k ,bg,k ], kε[0,n] (2)

xbc = [pbc,q
b
c] (3)

where the superscript Li denotes the local frame and subscript
bk denotes the body frame (the IMU frame) while taking the
kth image. xk is the IMU state at the corresponding to the
kth image. It contains the position (pLibk ), velocity (vLibk ), and
orientation represented by the quaternion (qLibk ) in the world
frame, and acceleration bias (ba,k ) and gyroscope bias (bg,k )
in the IMU body frame. n is the total number of keyframes
considered for optimization and M is the total number of
features considered. λl is the inverse depth of the lth feature
observed for the first time, l ∈ (1,M ). xbc is the extrinsic
parameter between the IMU frame and the camera frame.
To guarantee the computation efficiency, we only make use
of the measurements inside a sliding window to estimate the
states. The images inside in the sliding window are between
the frame bk and bk+n, with the time of tk and tk+n, respec-
tively. The VINS estimation is formulated as a nonlinear least
square problem for the ith agent as follows:

argmin
χ i

{∥∥rp −Hpχ i
∥∥2

+

∑
kεB

∥∥∥rB

(
Ẑbkbk+1 ,χ i

)∥∥∥2
P
bk
bk+1

+

∑
(l,j)εC

∥∥∥rC (Ẑcjl ,χ i)∥∥∥2Pcjl
}

(4)

where
{
rp,Hp

}
is the prior information from the marginal-

ization operation. The marginalization step is applied to
marginalize the old states and measurements outside the
sliding window. rB (.) is the residual term for IMU pre-
integration. The pre-integration technique is employed to
combine the high-frequency IMU measurements into a
low-frequency IMU factor. The variable Ẑbkbk+1 denotes the
pre-integration term which integrates the IMUmeasurements
between keyframe bk and bk+1. The variable Pbkbk+1 denotes

the covariance matrix corresponding to the Ẑbkbk+1 . The vari-
able rC (.) is the residual term for visual re-projection of the
feature. For a given new image, the features are detected by
the Shi-Tomasi [43] corner detection algorithm. Meanwhile,
the Kanade-Lucas-Tomasi (KLT) sparse optical flow algo-
rithm [44] is employed to track the features. B is the set of
all IMUmeasurements,C is the set of features that have been
observed at least twice in the considered sliding window. P

cj
l

is the covariance matrix for visual re-projection, which rep-
resents the uncertainty of feature measurements. The Ceres-
solver [45] is employed to solve the (4) to estimate the state
set inside a sliding window. Regarding the implementation of
the VINS in this paper, we refer to the framework in [15]. The
detail of the VINS can be found in [15].

B. AGENT MESSAGE PACKAGING
For a given epoch k (corresponding to the xk ) of an ith
agent, the positioning information involves the zLik,VINS =
[pLibk ,q

Li
bk ,p

b
c,q

b
c]
T from VINS, GNSS positioning, and the
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inter-ranging (see Fig. 1). The reference frame of VINS is
the first frame of the IMU, namely where the agent starts.

The GNSS receiver provides the positioning in the earth-
centered, earth-fixed (ECEF) coordinate system [12]. In this
paper, we convert the ECEF coordinate into the ENU frame to
denote the GNSS positioning by setting the first GNSS mea-
surements of the first agent as the reference point of the ENU
frame. For a given epoch k of an ith agent, the GNSS posi-
tioning in ENU is given as zw,ik,GNSS = [xw,ik , yw,ik , zw,ik ]

T
. The

subscriptw denotes the original of the ENU frame, namely the
world frame. The inter-ranging measurement providing the
distance between two separate agents i and j, denoted by zi,jk,IR.
The subscript IR denotes the inter-ranging measurement.
To detect the overlapping area between agents, the visual

information is needed to be transmitted to the centralized sta-
tion. The straightforward solution is to deliver the keyframe
image bk . However, this will lead to an unacceptable message
transmission load. Considering the requirements of overlap-
ping detection, we only deliver the feature descriptors and
3D position of landmark which are estimated by the VINS.
The Binary robust independent elementary features (BRIEF)
are employed to describe the features detected using the
Shi-Tomasi corner detection algorithm. The set of BRIEF
is denoted by FBRIEFk = [f BRIEFk,1 , f BRIEFk,2 , . . .]T at a given
epoch k . The position landmark set is given by PBRIEFk =

[pBRIEF,Lik,1 , pBRIEF,Lik,2 , . . .]
T
in the Li frame.

To sum up, the following information is packaged as an
agent keyframe message (AKM) as follows:

(1) Local pose estimation from VINS: zLik,VINS =

[pLibk ,q
Li
bk ]

T
involving the positioning and orientation

relative to the local frame of VINS.
(2) GNSS positioning in the world frame as zw,ik,GNSS =

[xw,ik , yw,ik , zw,ik ]
T
.

(3) The inter-ranging measurement between two separate
agents i and j, denoted by zi,jk,IR.

(4) Feature descriptors FBRIEFk = [f BRIEFk,1 , f BRIEFk,2 , . . .]T

and corresponding 3D position PBRIEFk = [pBRIEF,Lik,1 ,

pBRIEF,Lik,2 , . . .]T which is to be used for overlapping area
detection.

As we do not need to send the raw image and only the
processed measurements are transmitted to the centralized
station, the bandwidth of data transmission is limited to a low
bound.

IV. MULTI-AGENTS COLLABORATIVE
INTEGRATION (MCI)
The centralized station receives the AKM from multiple
agents. First, the overlapping area detection is performed
to detect the inter-agent connections based on the fea-
ture descriptors and 3D landmarks from AKM. Meanwhile,
the loop closure of a single agent is also detected using the
same algorithms. The outputs of both the overlapping area
detection and the loop closure detection are the relative pose

FIGURE 2. Factor graph for multi-agents (τ th, i th, and j th agents)
collaborative integration.

estimation between two AKMs. Second, the measurements
fromAKM include two parts, the local measurements relative
to the local frame (e.g. pose estimation arising from VINS),
or the global measurements relative to the global frame (e.g.
GNSS positioning). The relative measurements are subjected
to drift over time. Meanwhile, the global measurements are
noisy but drift-free.

Based on all the messages received from multiple agents
and overlapping detection results, a factor graph [29] can be
established as Fig. 2. The state node involves the orientation
and translation of each AKM relative the world frame and is
denoted as xw,ik = [pw,ibk ,q

w,i
bk ]

T
. The subscripts i and k denote

the agent ID and index of the AKM, respectively. Therefore,
the state set of the global optimization is as follows:

χMCI= [xw,00 , xw,01 , . . . ,xw,10 ,xw,11 , . . . ,xw,i0 ,xw,i1 , . . .] (5)

the xw,00 ,xw,01 , . . . denotes the state set of agent 0. The
xw,10 ,xw,11 , . . . denotes the state set of agent 1. The
xw,i0 ,xw,i1 , . . . denotes the state set of agent i.
The three shaded areas (green, yellow, and blue rectan-

gles in Fig. 2) denote the factor graph for agents τ , i, and
j, respectively. Within the factor graph of a single agent,
the light blue circle and small green rectangles denote the
VINS and GNSS factors, respectively. The purple and blue
circles connecting two separate agents represent the overlap-
ping area detection and the inter-ranging factors, respectively.
The factor graph optimization is performed to optimize all
the state nodes inside the factor graph of each agent with
the help of the inter-agent connections, the overlapping area
detection, and the inter-ranging factor. In other words, opti-
mizing the factor graph in Fig. 2 equals to find a config-
uration of nodes that matches all the factors as much as
possible.

To make the global optimization clear, Fig. 3 shows the
coordinate transformations of the ith and jth agents. The TWLi
encodes the transformation from the local frame (Li) of ith
agent to the world frame. The T LiBi encodes the transforma-
tion from the body frame (Bi) to the local frame (Li) of ith
agent. Be noted that the T LiBi is a homogeneous transformation
that involves both the rotation and translation. The trans-
formation is also the same for the jth agent which can be
seen in Fig. 3. The local measurements, such as the VINS,
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FIGURE 3. Coordinate transformations of i th and j th agents. The blue
dash curves denote the inter-agents connection established by
inter-ranging and overlapping detection.

provide the constraint in the local frame as T LiBi . The global
measurements, such as the GNSS positioning, provide the
constraint in the world frame as TWBi . Optimizing the factor
graph in Fig. 2 equals to finding the optimized TWLi of each
agent that matches all the local and global measurements.
To guarantee real-time performance, global optimization is
performed at a frequency of 1 Hz in this paper. However,
the T LiBi is given at a frequency of VINS. Therefore, the pose
estimation of each agent relative to the world frame can be
derived as TWLi T

Li
Bi at a frequency of VINS with real-time

performance.
The rest of Section IV presents the derivation of the listed

factors above and corresponding optimization.

A. VINS FACTOR
The VINS can provide accurate and relative pose estimation
in a short period, this paper makes use of the VINS to con-
straint the pose of the agent between two frames. As the pose
estimation from the VINS is given as zLik,VINS = [pLibk ,q

Li
bk ]

T
,

the error function (eik,VINS ) for the VINS factor can be derived
as follows:

eik,VINS =
(
zLik,VINS 	 zLik−1,VINS

)
− hik,VINS

(
xw,ik , xw,ik−1

)
=

[
qLi−1bk−1

(
pLibk − pLibk−1

)
qLi−1bk−1

qLibk

]

	

[
qLiw qw−1bk−1

(
pwbk − pwbk−1

)
qLiw qw−1bk−1

qwbk

]
(6)

where the variables xw,ik and xw,ik−1 denotes the states of the
ith agent at epoch k and k-1, respectively. The observation
hik,VINS (·) connects the state (x

w,i
k ) and observation measure-

ment (zLik,VINS ) from VINS. The symbol 	 is the minus oper-
ation on the error state of a quaternion. The first row of
eik,VINS denotes the relative pose error between epoch k and
k-1. The second row denotes the relative rotation error. The
covariance matrix of the eik,VINS is given as 6i

k,VINS and is
tuned based on the intrinsic parameters of the camera. In this
case, each VINS pose estimation can provide a constraint to
the factor graph in Fig. 2.

FIGURE 4. Illustration of overlapping area between agent 1 and 3 near an
intersection. The red circles denote the detected features using the
Shi [43] corner detection algorithm.

FIGURE 5. Illustration of using the PnP algorithm to estimate relative
pose between two frames.

B. OVERLAPPING AREA DETECTION FACTOR
Overlapping area detection is an effective way to establish
the connection between agents as the blue factors shown
in Fig. 2. Fig. 4 shows two images from two separate agents
passing the same intersection. In this paper, we make use of
themethod of loop closure detection in visual SLAM to detect
the overlapping based on the images from two agents. Then
the relative pose between two agents is estimated using the
perspective-n-Point (PnP) algorithm [46].

Firstly, a bag-of-words (DBoW2) [47] place recognition
method is employed to detect the overlapping between two
images (see Fig. 5), the image u from agent i, and image
v from agent j. DBoW2 returns the matching scores of two
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images based on the BRIEF descriptors. We argue that the
overlapping between two agents i and j is detected when
the matching score is beyond a threshold. Then the relative

pose, denoted by zi,ju,v,OVD = [pi,jOVD,q
i,j
OVD]

T
, between two

keyframes u and v can be estimated using PnP. The following
Fig. 5 shows the PnP problem based on two images from
agent i and j. The colored stars show the detected 2D features.
The colored pentagons denote the 3D landmarks whose posi-
tions are estimated by VINS in Section III-A. The inputs of
the PnP algorithm involve the 3D pose of the landmarks and
the pixel positions of the 2D features.

Therefore, the error function (ei,ju,v,OVD) for the overlapping
area detection factor can be derived as follows:

ei,ju,v,OVD =
(
zi,ju,v,OVD

)
− hi,ju,v,OVD

(
xw,iu , xw,jv

)
=

[
pi,jOVD
qi,jOVD

]
	

[
qw,i−1u

(
pw,jv − pw,iu

)
qw,i−1v qw,jv

]
(7)

the variable xw,iu denote the pose of the keyframe image u
from agent i in the world frame. Similarly, the xw,jv denote
the pose of the keyframe image v from agent j in the world
frame. The variables pi,jOVD and qi,jOVD denote the position
and rotation of the relative pose between keyframes u and v.
The hi,ju,v,OVD(·) denotes the observation function connects the

states and the zi,ju,v,OVD. The covariance matrix of ei,ju,v,OVD is

given as6i,j
u,v,OVD and is tuned experimentally with fixed val-

ues. In this case, each ei,ju,v,OVD provides a constraint, denoted
by the blue circle, to the factor graph in Fig. 2.

C. GNSS FACTOR
The GNSS receiver provides absolute positioning given by
zw,ik,GNSS = [xw,ik , yw,ik , zw,ik ]

T
from the ith agent at epoch

k in the world frame. The GNSS positioning can help to
mitigate the overall drift in long-term driving. The error
function (eik,GNSS ) for the measurement zw,ik,GNSS can be given
as follows:

eik,GNSS = zw,ik,GNSS − h
i
k,GNSS

(
xw,ik

)
=

 xw,ik
yw,ik
zw,ik

−
 (pw,ibk )x
(pw,ibk )y
(pw,ibk )z

 (8)

the hik,GNSS denotes the observation function which connects
the zw,ik,GNSS and state p

w,i
bk of the ith agent at epoch k . The oper-

ator (pw,ibk )∗ is employed to get a certain component of pw,ibk .
The covariance matrix of eik,GNSS is given as 6i

k,GNSS and is
directly given from the output of the GNSS receiver.

D. INTER-RANGING FACTOR
The inter-ranging measurements provide the relative distance
between agents as shown in Fig. 6. The variable zi,jk,IR denotes
the distance between agent i and j. For the given inter-ranging
connections shown in Fig. 6, the error function can be derived

FIGURE 6. Illustration of inter-ranging measurements between three
agents. The model of the small car is from Waymo [48].

as follows:

ei,jk,IR = zi,jk,IR − h
i,j
k,IR

(
xw,ik , xw,jk

)
= zi,jk,IR −

∥∥∥xw,ik − xw,jk

∥∥∥
(9)

the
∥∥∥xw,ik − xw,jk

∥∥∥ denotes the Euclidean distance between

agent i and j. The function hi,jk,IR(·) denotes the observation
function which connects the observation and states. The
covariance matrix of ei,jk,IR is given as6

i,j
k,IR and is experimen-

tally determined.
Similarly, the error functions can also be derived as

follows:

ei,τk,IR = zi,τk,IR − h
i,τ
k,IR

(
xw,ik , xw,τk

)
= zi,τk,IR −

∥∥∥xw,ik − xw,τk

∥∥∥
(10)

ej,τk,IR = zj,τk,IR − h
j,τ
k,IR

(
xw,jk , xw,τk

)
= zj,τk,IR −

∥∥∥xw,jk − xw,τk

∥∥∥
(11)

The covariance matrix for the inter-ranging measurements is
given with the same value.

E. OPTIMIZATION-BASED MULTI-AGENTS INTEGRATION
Based on the listed four kinds of factors, the optimal estima-
tion of the χMCI can be formulated as the following nonlinear
least square (NLS) problem,

χMCI
∗
= argmin

χMCI

∑I

i=1

∑
k∈Vi

∣∣∣∣∣∣eik,VINS ∣∣∣∣∣∣2
6i
k,VINS

+

∑
(i,j,u,v∈OVDi,j)

∣∣∣∣∣∣ei,ju,v,OVD∣∣∣∣∣∣2
6
i,j
u,v,OVD

+

∑
(i,j,k∈IRi,j,k)

∣∣∣∣∣∣ei,jk,IR∣∣∣∣∣∣2
6i
k,IR

+

∑I

i=1

∑
k∈Gi
||eik,GNSS ||

2
6i
k,GNSS

(12)

the variable χMCI
∗ denotes the optimal estimation of

χMCI .The variable Vi denotes the set of VINS factors. The
variable OVDi,j denotes the set of overlapping area detection
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FIGURE 7. Overview of the sensor setups and scenarios for evaluations. (a): scene of the evaluated urban canyon 1. (b) and (c): scene of the
evaluated urban canyon 2.

factors. The variable IRi,j,k denotes the set of inter-ranging
factors. The variable Gi denotes the set of GNSS factors.
Similar to the previous definition, the variables i and j denote
the index of agents. The variable k represents the index of
epoch inside agents. The variable I denotes the total number
of agents considered in MCI.

The Ceres-solver [45] is employed to solve the optimiza-
tion problem using the Levenberg-Marquardt method. Once
the optimization is solved, the TWLi can be calculated as
follows:

TWLi = TWBi T
Li−1
Bi (13)

the variable T LiBi is given by the local pose estimation, the
VINS. In the implementation, the optimization is performed
once a new GNSS factor is added to the factor graph in Fig. 2.

V. EXPERIMENT RESULTS
The proposed MCI method is verified through two real road
datasets collected in the urban canyons of Hong Kong. The
first experiment is implemented in a typical urban canyon
of Hong Kong which can be seen in Fig. 7-(a). The eval-
uated trajectory is shown in the top-left side of Fig. 7-(a).
The second experiment is conducted in amore complex urban
canyon with more moving objects and high-rising buildings
which can be seen in Fig. 7-(b∼c), leading to more chal-
lenges to the proposed MCI framework. The evaluated tra-
jectory is shown in the top-left side of Fig. 7-(b). During the
experiment, we drive several times with different routes to
simulate multi-agents due to the limited experimental setup.
We are fully aware that the conducted validation cannot fully
replicate the time delay of message transmission between
agents and the centralized station. The experimental vehicle
is shown on the left side of Fig. 7. The coordinate systems
between all the sensors were calibrated before the experi-
ment. Then all the data are recorded using the robot operation

system (ROS) [49] and then performed the proposed MCI
framework offline using a centralized station.

Regarding the experiment is urban canyon 1, a monocular
camera is employed to collect the raw color image at a
frequency of 10 Hz. An Xsens MTi 30 IMU is employed to
collect raw measurements at a frequency of 200 Hz. Besides,
the NovAtel SPAN-CPT, a dual-frequency GNSS (GPS,
GLONASS, and Beidou) RTK/INS (fiber-optic gyroscopes,
FOG) integrated navigation system, was used to provide the
ground truth of positioning evaluation. The gyro bias in-run
stability of the FOG is 1 degree per hour and its random
walk is 0.067 degree per hour. The baseline between the rover
and GNSS base stations is less than 7 km. Regarding the
inter-ranging measurements, we follow the work in [21] to
simulate the inter-ranging measurements with Gaussian noise
of NIR = (0, 1.5m2) based on the ground truth positioning
from NovAtel SPAN-CPT. Meanwhile, the GNSS solution
is also simulated with Gaussian noise of NIR = (0, 10m2)
based on the ground truth positioning from NovAtel SPAN-
CPT. We want to see how the proposed method can work
when the GNSS noise is subject to the Gaussian assumption.
The standard deviation of 10 meters for the simulated GNSS
positioning is selected based on our previous experimental
validation [11] in the urban canyon 1.

In experimental 2, we go one step further by validating the
proposed MCI framework using a more challenging dataset.
Different from the experimental 1, the GNSS positioning
is provided using a commercial-level u-blox M8T GNSS
receiver. The error distribution of the GNSS solution is
highly non-Gaussian due to the unexpected signal reflection
and blockage arising from tall buildings in urban canyon 2.
Moreover, the density of the dynamic objects is significantly
denser which can significantly challenge the performance
of VINS, compared with the scene in experiment 1. The
same simulation method is applied to simulate inter-ranging
measurements.
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TABLE 1. Positioning performances of different agents using different methods in urban canyon 1.

To verify the effectiveness of the proposed method, several
methods are compared.

(1) GNSS: GNSS standalone positioning provided by the
simulation in experiment 1 and the u-bloxM8T receiver
in experiment 2 for single-agent positioning.

(2) VINS [15]: VINS solution based on the work in [15] for
single-agent positioning.

(3) GNSS/VINS: GNSS/VINS integration using FGO for
single-agent positioning.

(4) GNSS/VINS/OVD: Multi-agents collaborative posi-
tioning by integrating the constraints from GNSS,
VINS, overlapping area detection between agents, and
loop closure inside agents.

(5) GNSS/VINS/OVD/IR: Multi-agents collaborative
positioning by integrating the constraints from GNSS,
VINS, overlapping area detection between agents,
loop closure inside agents, and the inter-ranging
measurements.

Regarding the performance evaluation, the popular EVO
toolkit [50] is employed to calculate the absolute positioning
errors (APE) of the listed fivemethods above. As only relative
positioning is provided from VINS, we also evaluate the
relative positioning error (RPE) for the VINS of a single
agent.

A. EXPERIMENTAL EVALUATION IN URBAN CANYON 1
The positioning performance of the proposed method in
urban canyon 1 is shown in Table 1. In this experiment, data
from 4 agents are integrated using the proposed MCI frame-
work. Both the single-agent positioning and multi-agents
positioning solutions are compared. An APE of 12.49 meters
is obtained based on GNSS standalone positioning for agent 1
with a standard deviation of 7.09 meters. Similar perfor-
mances are obtained for the other agents regarding the
GNSS standalone positioning, as similar Gaussian noise is
employed to simulate the GNSS solutions. The fourth row
of Table 1 shows the relative positioning error of VINS.
The relative positioning error is significantly smaller than
the APE since the RPE only accumulate in a short period
between two epochs. An RPE of 0.625 meters is achieved
based on VINS for agent 1. Interestingly, both the RPEs of
agent 2 and 3 are slightly smaller than the one for agent 1,

which is mainly due to the diverse environmental conditions.
0.87 meters of RPE is obtained for agent 4 with a standard
deviation (STD) of 0.92 meters. Therefore, we can see that
the VINS can provide decent positioning relatively in a short
period. In the SLAM field, the research tends to make use of
the RPE to denote the performance of VINS as only relative
positioning is derived from the VINS. However, we still
present the APE of the VINS for completeness. The fifth
row of Table 1 shows the APE of VINS, which denotes the
error accumulation. An APE of 16.81 meters is obtained from
VINS for agent 1 with an STD of 6.76 meters. Interestingly,
we can see that the APE is even larger than the APE of GNSS
standalone positioning (12.49 meters). Moreover, both the
APEs for agent 3 and 4 reaches more than 20 meters. In short,
we conclude that the VINS can provide decent positioning in
a short period and the GNSS is drift-free. Inspired by this,
we also show the performance of the integration of VINS and
GNSS in the sixth row of Table 1. Interestingly, the accuracies
are significantly improved compared with both the VINS or
GNSS standalone positioning for all the agents. An APE
of 5.49 meters is obtained for the agent 1 with an STD
of 3.33 meters. The APE is significantly smaller than both the
GNSS (12.49 meters) and VINS (16.81 meters) standalone
positioning. A similar phenomenon can also be seen by other
agents. The results show that the positioning from the VINS
and GNSS are complementary. However, the remaining APE
still reaches more than 5 meters for all the agents using
GNSS/VINS integration.

With the help of the overlapping area detection constraint
using the proposed MCI framework, the APE is decreased
from 5.49 meters to 4.22 meters. More importantly, the STD
is also significantly reduced from 3.33 to 1.95 meters. Similar
improvements can also be seen in the other agents. The
improved accuracy shows that the proposed method which
involves the OVD can effectively help to improve the posi-
tioning performance of all the agents. Themain reason behind
the improvement is that the OVD constraints connects all the
states of the agents and corrects the corresponding potential
errors by solving (12). However, we can see that the improve-
ment of the OVD constraint for agent 3 is limited with the
APE being improved from 5.01 meters to about 4.4 meters.
One of the major reasons for this is the misdetection of OVD
constraints. As we can see from Fig. 7, numerous dynamic
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FIGURE 8. Illustration of the performance of the listed five methods for agent 1 during the evaluated dataset
collected in urban canyon 1. The x-axis denotes the epoch during the test. The y-axis denotes the APE.

objects pose additional challenges to the applied OVD detec-
tion algorithm presented in Section IV-B. How to effectively
identify the misdetection case is still an open question to
see. Fortunately, with the help of the applied inter-ranging
measurements, the APE is significantly improved for almost
all the agents. The APE is decreased from 5.33 to 3.66 meters
for agent 2. Meanwhile, the STD is also decreased slightly.
A similar improvement can also be seen for agent 3. In short,
the inter-ranging measurement can effectively improve the
overall performance of all the agents, which shows the effec-
tiveness of the proposed method.

To show the detail of the performance of a single
agent using the listed five methods during the evaluation,
we present the APEs of agent 1 in Fig. 8. The red and green
curves denote the APE of GNSS and VINS standalone posi-
tioning, respectively. The GNSS positioning fluctuates dra-
matically during the test. The APE of VINS is significantly
smoother compared with the GNSS. However, the maximum
error of VINS reaches more than 25 meters which is far
from the positioning requirement of autonomous driving.
The cyan curve denotes the APE of GNSS/VINS integration
with significantly smaller errors. However, the maximum
error can still reach more than 10 meters. The black and
blue curves denote the APE of both the GNSS/VINS/OVD
and the GNSS/VINS/OVD/IR integrations, respectively. The
performance is improved almost throughout the evaluated
dataset, which shows the effectiveness of the proposed MCI
framework. Fig. 9 shows the trajectories of the listed five
methods for agent 1. The x-axis denotes the north direction
during the test. The y-axis denotes the east direction. The red
curve denotes the trajectory of GNSS standalone position-
ing. The green curve denotes the VINS solution. The cyan
curve represents the trajectory of GNSS/VINS integration.
The black and blue curves denote the trajectories based on
proposed MCI frameworks, respectively. The magenta curve

FIGURE 9. Illustration of the trajectories of the listed five methods for
agent 1 during the evaluated dataset collected in urban canyon 1. The
x-axis denotes the north direction during the test. The y-axis denotes the
east direction. The red curve denotes the trajectory of GNSS standalone
positioning. The green curve denotes the VINS solution. The cyan curve
represents the trajectory of GNSS/VINS integration. The black and blue
curves denote the trajectories based on proposed MCI frameworks,
respectively. The magenta curve denotes the reference trajectory from
SPAN-CPT.

denotes the reference trajectory from SPAN-CPT. We can
see that the trajectory of the VINS (green curve) deviates
significantly from the reference trajectory. The GNSS posi-
tioning fluctuates dramatically from the reference trajectory
(magenta curve). The proposed MCI framework achieved
smooth and accurate trajectories concerning the reference tra-
jectory, which again shows the effectiveness of the proposed
MCI framework.

Interestingly, the APE of GNSS/VINS integration is even
smaller than the proposed MCI framework at epoch 150.
The main reason behind it is the misdetection of the OVD
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FIGURE 10. Illustration of the trajectories of four agents using the proposed MCI frameworks in urban canyon 1.

constraint. the misdetection of OVD can introduce a large
positioning error to the whole factor graph shown in Fig. 2.
One possible solution to mitigate the number of misdetec-
tion of OVD is properly tuning the threshold of the degree
of feature matching [47]. However, the threshold is hard
to adapt to different scenarios. Meanwhile, the error can
also be contributed by the inter-ranging measurements. With
the significantly increased amount of measurements from
multiple agents, effectively identifying the fault measure-
ments is significant for improving the overall positioning
performance of all the agents. The switchable constraint
is proposed in [51] to model the unexpected outlier mea-
surements. However, it relies heavily on the data redun-
dancy of healthy measurements. It is interesting to see
how the switchable constraint can work in our proposed
MCI framework which possesses a large amount of data
redundancy.

Fig. 10 shows the trajectories of four agents using the
proposed MCI frameworks (both the GNSS/VINS/OVD
and GNSS/VINS/OVD/IR integrations). The top left of
Fig. 10 shows the trajectories of agent 1. The red curve
denotes the trajectory of agent 1 using GNSS/VINS/OVD
integration. the blue and magenta curves denote the trajec-
tories of GNSS/VINS/OVD integration and ground truth,
respectively. The color representations are also followed for

the other three agents shown in Fig. 10. We can see that the
agent 1 possess the longest trajectory with the overlapping
areas with all the other three agents.

With more agents participating in the MCI framework,
more overlapping constraints are added to the optimization
of (12). Inspired by this, we show the performance of the
proposed MCI framework when fewer agents are consid-
ered in the MCI framework. Table 2 shows the performance
of the MCI with only two agents (agents 1 and 2) being
considered. An APE of 5.02 meters is obtained using the
GNSS/VINS/OVD integration, which is larger than the one
from Table 1 (4.22 meters). Similar performance improve-
ment can also be seen for the GNSS/VINS/OVD/IR inte-
gration with the APE decreasing from 4.03 to 3.81 meters.
Table 3 shows the performance of the MCI with only two
agents (agents 1 and 3) being considered. A similar phe-
nomenon can also be found in Table 3 where the more agents
being considered leads to better performance. Interestingly,
the opposite phenomenon is found for agent 2 where the APE
is reduced from 5.33 (Table 1) to 4.83 meters (Table 2) using
GNSS/VINS/OVD integration.

In short, based on the evaluated results in urban canyon 1,
we conclude that:
(1) The proposedMCI framework can achieve significantly

improved performance compared with the single-agent

VOLUME 8, 2020 124333



W. Wen et al.: Multi-Agent Collaborative GNSS/Camera/INS Integration Aided by Inter-Ranging

TABLE 2. Positioning performances of MCI based on agents 1 and 2 using
different methods in urban canyon 1.

TABLE 3. Positioning performances of MCI based on agents 1 and 4 using
different methods in urban canyon 1.

positioning method, such as GNSS, VINS, and the
GNSS/VINS integration.

(2) Compared with the overlapping area detection-based
MCI, the inter-ranging measurements can effec-
tively improve the performance of MCI. An APE
of about 5 meters is obtained based on the
GNSS/VINS/OVD/IR-based MCI.

(3) With the significantly increased amount of measure-
ments from multiple agents, effectively identify the
fault measurements is significant for improving the
overall positioning accuracy of the agents.

B. EXPERIMENTAL EVALUATION IN URBAN CANYON 2
In this experiment, sensor measurements are provided by
three agents. The scene of the evaluated urban canyon 2 can
be seen in Fig. 7. The positioning performances of the listed
five methods are shown in Table 4. In this experiment,
data from 3 agents are integrated using the proposed MCI
framework. Similar to the evaluation in urban canyon 1,
both the single-agent positioning and multi-agents position-
ing solutions are compared. An APE of 14.69 meters is
obtained based on GNSS standalone positioning for agent 1
with a standard deviation of 11.89 meters. We can see that
the APE is larger than the one (12.49 meter of agent 1)
in urban canyon 1. Similar performances are obtained for
the other agents regarding the GNSS standalone positioning,
as the GNSS measurements are collected from the same area.
In short, we can see that the positioning error is larger than
the one in urban canyon 1, due to the taller buildings in urban
canyon 2, leading to severer GNSS NLOS and multipath
effects.

The fourth row of Table 4 shows the relative position-
ing error of VINS. An RPE of 1.08 meters is achieved
based on VINS for agent 1. Interestingly, the RPEs of all
the agents are larger than the ones in urban canyon 1. The
results show that urban canyon 2 is more challenging than
the urban canyon 1, leading to larger positioning errors in
VINS.Meanwhile, we can still find that the VINS can provide

FIGURE 11. Illustration of the trajectories of the listed five methods for
agent 1 during the evaluated dataset collected in urban canyon 2. The
x-axis denotes the north direction during the test. The y-axis denotes the
east direction. The red curve denotes the trajectory of GNSS standalone
positioning. The green curve denotes the VINS solution. The cyan curve
represents the trajectory of GNSS/VINS integration. The black and blue
curves denote the trajectories based on proposed MCI frameworks,
respectively. The magenta curve denotes the reference trajectory from
SPAN-CPT.

more accurate positioning relatively in a short period, com-
pared with the GNSS positioning. Similarly, the fifth row of
Table 4 shows the APE of VINS, which denotes the error
accumulation. An APE of 33.13 meters is obtained from
VINS for agent 1 with an STD of 11.02 meters. Interestingly,
we can see that the APE is even larger than the APE of GNSS
standalone positioning (14.69 meters). Moreover, both the
APEs for agent 3 and 4 reaches more than 17 meters.

Similar to the validation in urban canyon 1, we also show
the performance of the integration of VINS and GNSS in
the sixth row of Table 4. Interestingly, the accuracies are
also slightly improved compared with both the VINS or
GNSS standalone positioning for all the agents, which again
show the complementariness of VINS and GNSS. An APE
of 13.75 meters is obtained for the agent 1 with an STD
of 6.69 meters. The APE is significantly smaller than both
the GNSS (14.69 meters) and VINS (33.13 meters) stan-
dalone positioning. A similar phenomenon can also be seen
by other agents. However, the remaining APE still reaches
more than 10 meters for all the agents using GNSS/VINS
integration.

With the help of the overlapping area detection constraint
using the proposed MCI framework, the APE is decreased
from 13.75 meters to 12.64 meters. Interestingly, the STD is
slightly increased from 6.69 to 6.99 meters. Similar improve-
ments can also be seen in the other agents. The improved
accuracy shows that the proposed method which involves the
OVD can help to improve the positioning performance of all
the agents. Similarly, the main reason behind the improve-
ment is that the OVD constraints connects all the states of
the agents and corrects the corresponding potential errors by
solving (12). However, we can see that the improvements
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TABLE 4. Positioning performances of different agents using different methods in urban canyon 2.

FIGURE 12. Illustration of the performance of the listed five methods for agent 1 during the evaluated dataset
collected in urban canyon 2. The x-axis denotes the epoch during the test. The y-axis denotes the APE.

of the OVD constraint for all agents in urban canyon 2 are
smaller than the one in urban canyon 1. One of the major
reasons for this is the challenging scene which leads to
more misdetection of OVD constraints. As we can see from
Fig. 7, numerous dynamic objects lead to additional chal-
lenges to the applied OVD detection algorithm presented in
Section IV-B. Moreover, the data is collected during the night
which introduces additional challenges for OVD detection.
To the best of the author’s knowledge, this is the first paper
that validates the OVD constraint in collaborative positioning
using a dataset collected in the night period.

Effectively identifying the OVD in the night scene is still
a challenging problem. Fortunately, with the help of the
applied inter-ranging measurements, the APE is significantly
improved for almost all the agents. The APE is decreased
from 12.64 to 11.87 meters for agent 1. Larger improvements
are achieved for agent 2 and 3. In short, the inter-rangingmea-
surement can effectively improve the overall performance
of all the agents even when the OVD constraints are lim-
ited, which shows the effectiveness of the proposed method.
We are fully aware that the inter-ranging measurements in
practice can be different than the ones that simulated in this

paper. In the next step, we will conduct the real experiment
to validate the effectiveness of the proposed MCI framework
and it is interesting to see the difference between then.

To show the detail of the performance of a single
agent using the listed five methods during the evaluation,
we present the APEs of agent 1 in Fig. 12. Like Fig. 8,
the red and green curves denote the APE of GNSS and VINS
standalone positioning, respectively. The GNSS positioning
fluctuates dramatically during the test, with the maximum
APE reaching more than 35 meters. The APE of VINS is
significantly smoother compared with the GNSS positioning.
The cyan curve denotes the APE of GNSS/VINS integration
with significantly smaller errors. However, the maximum
error can still reachmore than 30meters. Interestingly, we can
see that the GNSS/VINS integration is significantly smoother
in urban canyon 1. One of the major reasons is that the
GNSS positioning noise in urban canyon 1 is simulated using
Gaussian distribution. However, the data of GNSS in urban
canyon 2 is collected using the real GNSS receiver and
the GNSS signal is severely affected by the NLOS effects.
According to our findings in [52], the noise of GNSS tends
to be a Gaussian mixture model-based distribution. However,
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FIGURE 13. Illustration of the trajectories of four agents using the proposed MCI frameworks in urban canyon 1.

FIGURE 14. Experimental setup for future experimental validation which
involves real inter-ranging measurements and message transmission with
time delay.

the FGO relies heavily on the assumption of Gaussian noise
of sensor measurement. Therefore, we believe that the viola-
tion of the Gaussian assumption is one of the major reasons
leading to more fluctuant errors of GNSS/VINS integration
in urban canyon 2.

The black and blue curves denote the APE of both the
GNSS/VINS/OVD and the GNSS/VINS/OVD/IR integra-
tions, respectively. The performance is improved almost
throughout the evaluated dataset compared with the single
agent-based positioning, which shows the effectiveness of the
proposed MCI framework. Similar to Fig. 9, Fig. 13 shows
the trajectories of the listed five methods for agent 1. We can
see that the trajectory of the VINS (green curve) deviates
significantly from the reference trajectory. The GNSS posi-
tioning fluctuates dramatically from the reference trajectory
(magenta curve). The proposed MCI framework achieved
smoother and more accurate trajectories concerning the ref-
erence trajectory, which again shows the effectiveness of the
proposed MCI framework.

Interestingly, the APE of GNSS/VINS integration is even
smaller than the proposed MCI framework at epoch 180.
The main reason behind it is the misdetection of the OVD
constraint. the misdetection of OVD can introduce a large
positioning error to the whole factor graph shown in Fig. 2.
As mentioned previously, the night dataset in urban canyon 2
introduces significantly larger challenges for OVD con-
straints detection.

Fig. 13 shows the trajectories of four agents using the
proposed MCI frameworks (both the GNSS/VINS/OVD
and GNSS/VINS/OVD/IR integrations). We can see that

the agent 1 possess the longest trajectory with the over-
lapping areas with all the other three agents. In short,
we can find that the best performance is obtained using the
GNSS/VINS/OVD/IR integrations which again shows the
effectiveness of the proposed method.

VI. DISCUSSION AND CONCLUSION
Achieving accurate positioning from the low-cost onboard
sensors (GNSS/IMU/camera) from a single agent in the urban
canyon is still a challenging problem to be solved. Instead
of estimating the vehicular state simply based on onboard
sensors from a single agent, the paper proposes amulti-agents
collaborative integration (MCI) framework to improve the
positioning accuracy, based on onboard sensors and leverage
both the vision-based overlapping area detection and the
inter-ranging measurements to boost the cross-connection
between multi-agents. We validate the proposed MCI frame-
work using challenging datasets collected in urban canyons
of Hong Kong. The evaluated results show the effectiveness
of the proposed MCI framework compared with the single
agent-based positioning.

Based on the validation in urban canyon 2, we find that
the performance of OVD detection is significantly challenged
in the night scene. However, the inter-ranging measurements
can effectively boost the cross-connection between agents,
even when the OVD constraint is limited. In the future work,
wewill study to explore the advantage of massive data inMCI
to detect the potential outlier measurements, for example,
the misdetection of OVD, GNSS outliers.

Since the inter-ranging measurements are simulated based
on the work in [21], and the time-delay of message transmis-
sion between the agent and centralized station is not consid-
ered in this paper, we will conduct the experiments which
involve real inter-ranging measurements and message trans-
mission with time delay. The experimental setup is shown
in Fig. 14 which is provided by the Institute of Software
Application Technology, Guangzhou.
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